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ABSTRACT
Software packet processing frameworks act as critical compo-
nents in modern network architecture, as their performance
has a vital impact on the quality of the network services. Moti-
vated by the increasing number and capability for advanced
vector instructions in recent mainstream CPUs, this paper ex-
plores a new parallel processing design and implementation
of data structures and algorithms that are frequently used
for building network applications. In particular, we propose
effective SIMD optimization techniques for the bloom filter
and Open vSwitch megaflow cache. Our design reduces mem-
ory access latency via careful prefetching and a new design
that meets the needs of fast data consuming instructions. Our
evaluation shows performance improvements up to 162% in
bloom filter and 48% in Open vSwitch compared to their scalar
version.

CCS CONCEPTS
• Networks → Cloud computing; • Computing methodolo-
gies → Parallel computing methodologies.
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1 INTRODUCTION
Hash tables are fast data structures for manipulating tables
with a large number of entries. Due to simplicity and efficiency,
hash tables and their variants act as fundamental components
of several network applications, such as tuple space search
algorithm in virtual switches [21, 25] and hash-based pattern
matching in IDS applications [8, 24].

In a high-speed network environment equipped with
10/40/100 GbE network cards, such software packet classifi-
cation applications face over 14 millions of minimum-sized
packets per second. Excessive hash function calls during the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
APNet ’20, August 3–4, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8876-4/20/08. . . $15.00
https://doi.org/10.1145/3411029.3411033

packet classification process gives heavy computational load
to the CPU and has significant impact on the application’s
performance.

Meanwhile, architectural advancements have been made
into the recent mainstream CPUs. Not only with respect to
the number of cores and clock frequency, but they also adopt
higher single-instruction-multiple-data (SIMD) capabilities
including wider SIMD registers and more advanced vector
instructions [12, 13]. SIMD technology has been evolving from
the early years and is showing no signs of stopping. In In-
tel CPUs, for example, the first generation SIMD technology
(MMX) only uses 64-bit registers and provides only integer
operations. Since then SIMD instructions have been extended
to SSE (128-bit), AVX/AVX2 (256-bit) and most recently, AVX-
512 which supports 512-bit register operation. In addition to
the extensions in register size, more practical features such as
floating-point number operations, non-contiguous memory
load (gather), and store (scatter) operations are added to the
latest versions of the ISA [12, 13].

Effectively utilizing SIMD capabilities can drastically im-
prove the performance of the tasks running on CPUs. Various
vectorized designs are proposed to accelerate database opera-
tions [22, 23, 28, 29], multimedia processing [6] as well as other
applications that have data parallelism [18, 20]. However, con-
verting a scalar code having its control flow into a vectorized
code is not trivial for the data packed into a vector are executed
with the same instruction no matter which branches are taken
for the data. Thus conditional branches should be substituted
by the data flow, which means a series of arithmetic opera-
tions with specific operand for each data in different branch.
Moreover, parallel operations often come at the expense of
increased memory access latency. To be specific, since a data
object resides in a contiguous memory block, a scalar code
benefits from the spatial locality. However, loading data for
parallel processing often involves several discontiguous mem-
ory access. One cache miss among the access would postpone
the data being loaded to the vector register and thus degrade
performance.

We argue that SIMD vectorization is more than a parallel
algorithm, but proper memory access latency hiding and cor-
responding data structure conversion. The array of structure
form of data in scalar code leads to discontiguous memory
access for the vectorized code to load several data on the vector
register. Instead, form of the structure of array that locates the
same field data in each array is preferred for the reason of that
the instruction to load a contiguous memory block is much
cheaper than from discontiguous memory addresses [13].
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In this paper we show two use cases of SIMD acceleration
for vectorized bloom filter [23] and Open vSwitch megaflow
cache [21]. The algorithm of the existing vectorized bloom fil-
ter [23] is designed for 256-bit ISA, which can process 8 32-bit
keys. To assign an operand for each lane by the boolean result
of the conditional branch, it refers to a table having 28 entries
and each entry contains a set of operands for the vector. The
table size grows exponentially to 216 entries for the naïve ex-
tension to the 512-bit ISA, which prevents its performance to
scale with the size of the registers used for the algorithm. To
extend the algorithm to the 512-bit ISA without penalty, we
exploit the new instructions in the state of the art SIMD tech-
nology, AVX-512, and adopted careful data prefetching and
loop unrolling optimization techniques to hide the memory
access latency. Moreover, we propose a new data structure for
the packet batch representation in Open vSwitch megaflow
cache to avoid discontiguous memory accesses.

Our evaluation shows bloom filter lookup throughput for
the synthesized inputs outperforms existing vectorized bloom
filter for up to 162%. The end-to-end throughput of OvS with
the microflow cache disabled, vectorized Open vSwitch out-
performs its scalar implementation by up to 48%.

In addition, we show that SIMD aware data structure is
mandatory for Open vSwitch acceleration by comparing its
performance on the vectorized implementation without a new
data structure.

2 OPPORTUNITY AND CHALLENGES
To improve the performance of network applications, many
previous studies explore the design space of parallelism re-
lying on the massively-parallel processing power of GPU [10,
14, 16, 26]. Some research reports that other hardware accel-
erators such as integrated GPU (APU) also help improve the
performance [9]. Although these approaches are effective, the
involvement of hardware accelerators incurs extra expense for
the devices and energy consumption.

In contrast, SIMD technology is widely adopted on main-
stream CPUs. Recent Intel CPUs support 512-bit instruction
set which can pack sixteen 32-bit integers within a vector. Al-
though SIMD parallelization degree is less aggressive than
GPUs, it has benefited from other aspects. First, it is cost-
effective because it does not incur the cost of buying and
maintaining new hardware. Second, data is processed on CPU,
thus, it has no additional latency caused by transferring data
to/from the accelerators. Previous work reports it takes ∼ 15µs
to send one-byte data to and from a GPU [19], which is intol-
erable for some latency-critical applications [15]. Without the
data transferring latency overhead, SIMD technology in CPU
is more attractive to carry out parallelization.

In leveraging SIMD, two considerations must be made to
adopt the original program to use vector instructions. We
present the two and demonstrate their use through two case
studies in this paper.
Control flow to data flow conversion: SIMD vectorization re-
quires an algorithmic change in the original program, which is
different from vectorization in GPU. In GPU programming, a

code named kernel is executed on a streaming multiprocessor.
It follows SIMT (single instruction multiple threads) computa-
tion model in which the cores in a streaming multiprocessor
shares the same program counter and executes the same in-
struction. The control divergence is managed by the hardware
by turning the threads on and off. Thus, a kernel code can be
written in the same way as scalar code executed in CPU.

On the contrary, a SIMD program should handle the con-
trol divergence of each data in a vector in the program. The
conditional branches turn out to be a comparison operation
that generates the bitmask value as the result which indicates
the lanes that taking the branch or not by the bit set. Then
different branch operations are done selectively to the lanes
corresponding to the bitmask. Other lanes of data those are in
the same vector but do not require the operation cause waste
of vector computation. Converting the control flow to a data
flow while maintaining high utilization of the vector is not
straightforward.
Memory access latency hiding: A 512-bit SIMD instruction
can consume sixteen 32-bit data at once. Feeding multiple data
quickly enough so as to prevent the instruction from stalling is
crucial for high performance. A scalar code accesses one data
structure at once and once the data structure is loaded on the
cache, it can take advantage of the spatial locality. However,
for loading the data onto a vector register, several addresses
spread over the array of structures are accessed. The instruc-
tion cannot retire until all the data is fetched from the memory.
The possibility of a vector operation to benefit from the spatial
locality is far less than the scalar code. Because of that, naïvely
change the branches in the algorithm to data flow with the
existing array of structure form of data might slow down the
program. Thus, memory access latency hiding [15] becomes
much more important and must be considered along with the
vectorization algorithm to effectively utilize SIMD instructions.

3 DESIGN AND IMPLEMENTATION
3.1 Bloom Filter
Bloom filter is a probabilistic data structure designed to test
whether an element is a member of a set. Multiple hash func-
tions are used to index each element. To insert an element to
the set, it sets each index bits to one in the bloom filter, which
is a fixed-length bit array. To query an element for the member-
ship, compute the hash values of the key, and test all the bits in
the bloom filter. If all the bits are set, then the element is highly
likely to belong to the set. Else, if there exist a bit tested is
zero, the element is definitely not in the set. The simplicity and
space-efficient characteristics make bloom filter and its vari-
ants widely used in network applications [3, 5] and database
systems [8].

We start by giving a brief introduction to the scalar bloom
filter algorithm and then describe our implementation details
step by step. The hash function used in the bloom filter is
MurmurHash3 which is well known as a fast and uniform
algorithm. We input the key with the different seed values
to get several independent hash values with one single hash
algorithm. The keys, which in this case 32-bit integer values are
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Figure 1: AVX-512 vectorized bloom filter overview

prepared as an input array. In the scalar implementation of the
bloom filter, one key is processed at a time. The corresponding
bits at the offsets dependent on the hash values are tested in
order. Once a bit is not set, the key is discarded and the next
key is processed. For the lookup succeeded keys, the keys and
their payloads are stored to the output array.
Vectorization Algorithm: To re-write the bloom filter into a
vectorized program, the control flow should be converted to
the data flow. The data flow in our program referred to previ-
ous vectorized bloom filter [23] can be divided into three parts,
which are hashing part, gather and test part, vector update
part. We describe each component below.

Sixteen keys are loaded on the 512-bit vector at the starting
of the iteration. Each key starts to compute the first hash value
with the hash seed index for each key points to the first seed
value. The hash seed values are loaded according to the index
values and input to the vectorized MurmurHash3 function
together with the keys vector. The vectorized hash function
outputs sixteen 32-bit hash values in a 512 vector as the result.

The 32-bit filter words containing the bits to be tested are
gathered from the memory. The offset of the word is derived
from the hash value divided by 32. The bit is tested for each key
by AND operation with a mask vector that only the tested bit
is set in each lane. The test result will return a 16-bit bitmask
that indicates the test failed keys’ lane. Then at the last stage,
the hash seed index vector will be updated to point to the
next seed value of each lane. And for those keys that already
reached the last seed value, means all the bits for the key are
tested and no anyone bit is zero. Those keys will be regarded
as to be pass and be stored in the output array.

In the next iteration, the keys that failed or passed all the
hash functions will be removed from the keys vector, and new
keys will be loaded on those lanes. In the prior work [23] it
permutes the keys vector to separate the keys should remain
and those should be removed. A set of permutation indices
is indicating each lane’s new position after the permutation.
Those sets of indices are stored in a table and accessed using
the 8-bit test result as the offset to the set. We utilize the latest
AVX-512 instruction to remove the permuting process. The
key instruction is expandload as shown in Figure 2 which loads
contiguous values in memory into specific lanes in the vector
that indicated by the bitmask.

Figure 1 shows a possible situation in the second iteration.
The aborted keys bitmask tells the positions of keys that failed

2 3 4
memory

2 3 4

__m512i vector

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
__mmask16 mask

Figure 2: Expand load and compress store intrinsic fucntion
operations

...
…

...
…

...

Input Keys Array

Partition 1 Partition 2

 iteration load
 iteration load  iteration load

 iteration load

Figure 3: Multi-way loop unrolling

or succeed in all the tests in the previous iteration. Those lanes
will be overwritten by the new keys in the input array. The
loop iterates until remained keys are less than aborted keys in
previous iteration. And the rest keys are processed serially.
Vector Loop Unrolling: Modern processors feature advanced
out-of-order execution to avoid pipeline stalls. Loop unrolling
increases the number of independent instructions in the loop
body and it leads to increasing opportunities to benefit from
this feature and improving the performance. The previous
work [23] implemented loop unrolling with a maximum factor
of 2, which processes two vectors of keys in the loop body.

We extend the prior work [23] by introducing multi-way
loop unrolling implementation. It divides the input keys array
into the number equal to the unrolling factor U. In the loop
body, the number of U vectors load input keys from the start of
each partition as shown in Figure 3. In the next iteration, each
vector loads new keys to be processed in its own partition. The
for-loop ends when one of the vectors among those reaches
the end of its partition, and the rest of the keys in the input
array will be handled serially. In this way, the unrolling factor
can be adjusted to any number to get the best performance.
Bloom Filter Prefetch: Because filter word gathering opera-
tion is random access to the memory, it causes frequent cache
misses and significant performance degradation when the
bloom filter size exceeds the size of the caches. Several pro-
cessing vectors in the loop body gives further chances for the
acceleration. That is to adopt memory access latency hiding
technique, prefetch the filter words in the first hash value vec-
tor and then proceed to compute the hash value of the second
keys vector and prefetch the filter words according to the sec-
ond hash value vector and so on. When all the vectors in the
loop body finish the hash computing and prefetching, then
the loop body goes on for the remaining procedure of gath-
ering and testing. Several processing vectors existing in the
loop body enabled hash computing and memory accessing
interleaving such that improves the lookup performance with
a large size of bloom filters.
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Functions CPU%

netdev_flow_key_hash_in_mask 48.67%
cmap_find_batch 18.48%
dpcls_rule_matches_key 6.54%

total 73.69%

Table 1: OVS profiling data shows megaflow cache lookup
is a bottleneck. Tested with the number of average traversed
subtables set to 30 per packet, each subtable contains 2000
rules

3.2 Open vSwitch
The performance of the OvS packet classification is critical to
the quality of network services. Megaflow cache as a flow cache
module in the packet classification pipeline should handle
most of the packets when it faces a large number of flows.
The profiling data for stress testing megaflow cache in Table 1
depicts that the major bottleneck in megaflow cache lookup
is computing the hash values for the packets. Our goal is to
vectorize this with SIMD instructions.
Existing Data Structure and Algorithm: OvS megaflow cache
adopts tuple space search algorithm to perform packet classifi-
cation. A tuple or subtable means a collection of classification
rules that matches the same combination of fields with the
same wildcard. For each subtable, the wildcard mask is ap-
plied to all the packets that remaining in the batch. The only
fields that the subtable cares are ANDed with the mask value
and composed into the hash key for computing the signature.

The data structure used in this algorithm is miniflow, which
is a compact data structure to represent the packet header
information. OvS defines a huge flow data structure in which
enumerates all the header fields used in all kinds of protocols
that OvS supports. Because of its wide coverage, the size of
it is fairly large and sparse to represent a packet header with
it. miniflow is proposed to minimize the packet batch memory
footprint and the number of accessed cache lines. It has a
bitmap of which each bit represents each uint_64 value in
struct flow. A zero bit indicates the corresponding 64-bit value
in struct flow is zero and a 1-bit that may be nonzero value. The
nonzero 64-bit values follow the bitmap.

In addition to the packets, a subtable mask is also repre-
sented as miniflow. The values of it are the mask that 1-bits
set on the bits to match. The process of subtable lookup by
miniflows of packets and subtable mask is like following. The
header fields of the packet that the subtable miniflow bitmap
indicates are extracted. It starts from the rightmost bit in mask
bitmap, compares the bit of packet bitmap that at the same po-
sition. If the bit in packet bitmap is zero, the extracted value is
zero. Else, if the bit in packet bitmap is one, the packet value is
retrieved from its value array. The values index is the same as
the number of 1-bits at the right side of the current rightmost
mask bit. Subtable mask values are applied to the extracted
packet values to wipe the don’t care bits out and fed to the
hash function.
Limitation of Naïve SIMD Implementation: The approach
to naïvely convert the control flow to the data flow with ex-
isting data structure and manipulation algorithm to process

Existing Packet Batch 
Memory Layout

Transposed Packet Batch 
Memory Layout

…

64-bit values

v1_1

v1_2

…

32-bit values

vn_1

vn_2

Packet_1 v_1 v_2 … v_n p_1 p_2 … p_32

Packet_2 v_1 v_2 … v_n

Packet_32 v_1 v_2 … v_n

Packet_3 v_1 v_2 … v_n

p_1 p_2 … p_32

p_1 p_2 … p_32

p_1 p_2 … p_32

…

…

Figure 4: Existing and new data structure memory layout

several packets in one vector degrades performance in practice.
Although the operations comprising the most of this process
such as arithmetic operations(plus and minus), bitwise opera-
tions(AND) can be parallelized with SIMD vector operations.

The fundamental problem is the array of structure form
of packet batch data structure as shown in Figure 4. Loading
multiple packet data requires to access multiple discontiguous
memory addresses and the possibility of all the data accessing
hit the cache is far lower than that of accessing single data.
As a result, the overhead of loading data to the SIMD vector
offsets the benefits from the vectorized hash computing.

To remove the memory access overhead in the vectorized
program, we propose a new data structure which is the trans-
posed form of the existing one and corresponding vectorized
algorithm to handle it.
Transposed Data Structure: To retrieve the packet data from
one contiguous memory block, the form of structure of array
is preferred. We come up with the transposed miniflow data
structure as shown in Figure 4. The first 64-bit values of the
packets in the batch(maximum 32 packets) are arranged into
two arrays. We divide a 64-bit value into a higher 32-bit value
and a lower 32-bit value and pack all lower 32-bit values from
32 packets in one array, all higher 32-bit values pack into the
other array. The reason for truncation is that internal of the
hash function on 64-bit value is actually done by hashing lower
32-bit value first and higher 32-bit value followed. By separat-
ing two 32-bit values into different arrays, we can directly load
lower/higher 32-bit values instead of loading a whole 64-bit
value and then do extra vector operation to separate them. The
transposed miniflow is generated in addition to the normal
miniflow. When the packet header is parsed and the value is
stored in the miniflow, we copy the value to the transposed
miniflow structure.
Vectorized Algorithm: With the transposed data structure,
loading the packet value does not access multiple memory
addresses, instead, loading from a contiguous block. A 512-bit
vector contains 16 32-bit values is passed to the vectorized
hash function and 16 hash values are produced in one itera-
tion. SIMD instructions are effective when the vector is full of
data, yet they result in lower throughput per cycle compared to
scalar instructions. As a result, processing a few data using vec-
tor register costs more time than serial processing. Thus, we set
the threshold for vector processing such that we execute SIMD
code only when the number of packets remaining in the batch
is larger than the threshold. We conduct micro-benchmark to
determine the threshold which is 8 in our case.
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In the vectorization algorithm, we assume that the network
traffic has a majority type of packets such as TCP, UDP, or
any tunneling protocols. The packets in the same protocol will
have the same miniflow bitmap, and it ensures the values in
an array of the transposed miniflow are the data of the same
header field. For those exceptional packets having different
miniflow bitmap with the majority, different field values will
be stored in the array. Taking account of the fact that an array
in the transposed miniflow structure is deemed to be all the
same field values and be retrieved for computing the signature,
an exceptional packet is getting the wrong signature value for
it. It results in the megaflow cache miss and the packet will be
passed to costly OpenFlow table lookup which is an undesired
case. To prevent the exceptional packets to miss the megaflow
cache, we mark the exceptional packets in the batch before the
megaflow cache lookup. For each subtable, when the number
of packets is larger than the threshold, we first process the
batch of packets with AVX-512 vectorized code and do the
extra serial computing only for the exceptional packets.

4 EVALUATION
4.1 Bloom Filter
We evaluate the performance of AVX-512 vectorized bloom fil-
ter which we call HPBF(highly vectorized bloom filter). From
the evaluation we emphasize that naïvely adopting SIMD in-
structions is leading to suboptimal performance than it actually
could achieve. We show the impact of data flow conversion
using new instructions and memory access latency hiding
techniques give to the performance in the case study.

The experiment for the bloom filter lookup is executed on
the platform with Intel Xeon Silver 4114 at 2.2GHz. The CPU
has 32KB L1 data cache, 1MB L2 cache and 10M L3 cache on-
chip. We randomly generate 1M keys following the uniform
distribution. We measure the lookup throughput in millions
of operations per second. The number of elements in the filter
is set to 1/10 of the filter bits and 3 hash functions to get the
moderate false positive rate. Error bars show a 95% confidence
interval.

First we show the performance improvement of HPBF which
extends the vector size from 256 to 512 as well as adopts ex-
pand load/compress store instructions into data flow instead of
the permutation table. We only use a single core in the CPU
for all the experiments. Figure 5 shows HPBF outperforms
AVX/AVX2(256-bit) baseline up to 94%. The varying size of
bloom filters that don’t exceed the capacity of L1 cache, L2
cache, L3 cache, as well as the one that exceeds all level of
caches are tested. The throughput and the speedup rate are
decreased as the size of the bloom filter increases as mem-
ory accessing dominants the performance. The naïve AVX-512
implementation, which only extended the size of the vectors
while retaining the same algorithm has little improvement due
to an exponentially enlarged permutation table.

Figure 6 shows the loop unrolling optimization affects the
performance upon the parallelized algorithm. The baseline is

256-bit vectors with the factor of 2 loop unrolling. Loop un-
rolling optimization has a drastic improvement on the through-
put up to 162% compared to the baseline. The throughput
grows as the loop unrolling factor increases until a certain
number, then degrades with more loop unrolling. That is be-
cause aggressive loop unrolling might incur register threshing.
We also find that the loop unrolling factor at the peak of the
performance increases with the growing filter size.

Figure 7 shows the impact of prefetching upon loop un-
rolling when the size of the bloom filter is large. Loop unrolling
hides the memory access latency relying on the advanced out-
of-order execution capabilities in modern CPUs. We find that
prefetching can further optimize the memory access latency.
It outperforms baseline which is using 256-bit with factor of 2
loop unrolling up to 65% and the loop unrolling implementa-
tion without prefetching 25%.

4.2 Open vSwitch
We use two servers with Intel Xeon Gold 6128 CPU at 3.40
GHz, one for running the OvS, and the other one for running
the software packet generator MoonGen[7]. Two machines are
connected by dual-port 10 Gbps NICs. We generate minimum-
size 64-byte TCP packets with line-rate using MoonGen packet
generator. We run OvS v2.11.1 with DPDK with the PMD
thread pinned to an isolated core. OvS-DPDK bridge is set up
with the rules to match all the packets and switch the packets
to the other port. We turn off the Exact Match Cache(EMC)
to benchmark the performance of standalone megaflow cache
performance. It can be regarded as the worst case performance
with random and a large number of short lived connections
that many packets miss the EMC.

Figure 8 shows the time cost for producing signature values
for one packet batch in a subtable. For serial implementation,
the time cost is proportional to the number of packets in the
batch that have not yet found a matching rule. However, AVX-
512 vectorized megaflow runs two iterations no matter how
many packets left. The reason is AVX-512 processes 16 consec-
utive packets in the batch. It doesn’t pick the remained packets
to pack the vector, since record the packets’ indices in the batch
and gather the data from discontiguous memory cost extra
processing time. To make sure all positions in the batch are
processed, we run two iterations either the number of packets
is less or larger than 16. Thus, AVX-512 vectorized megaflow
cache has the same processing time across the x-axis. We also
compare with the performance of CRC hash algorithm which
is an alternative hash function in OvS using CRC intrinsic func-
tions in SSE ISA. We find that when the number of packets in
the batch is less than 8, serial processing with CRC is faster
than AVX-512. So we set the threshold value to 8 according to
this result.

We evaluate the end-to-end throughput of the vectorized
OvS with varying numbers of subtable traversal per packet.
Figure 9 shows AVX-512 implementation with transposed data
structure outperforms all the serial implementation when the
number of subtables is larger than 5. And the speedup rate
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Figure 9: End-to-end throughput for TCP packet traffic
keeps growing up to 17% compared to CRC and 48% compared
to murmur hash function.

5 RELATED WORK AND FUTURE WORK
SIMD parallelism has been studied for several database sys-
tems. Zhou et.al. [29] proposed vectorized database operations
including sequential scans, aggregation, index operations etc.
Cargri et.al explored SIMD implementations of sort-merge
join and radix-hash join [1]. There are some parallel sorting
algorithms for SIMD processors [2, 11]. Harald Lang et.al pre-
sented the algorithm that addresses control flow divergence
for the data-parallel query pipelines [17]. Orestis and Ken-
neth proposed vectorized bloom filter [23] to efficiently utilize
vector lanes.

SIMD capabilities are also adopted in various network appli-
cations and frameworks. DPDK [4] has vector PMD as well as
hash table library which optimizes packet I/O and comparison

operations using SSE/AVX instructions. VPP [27] also makes
use of SIMD instructions for its processing. However, neither
of them is adopting SIMD at the code with control flow.

In the future, we will adapt our bloom filter design to the
real world network applications and also apply vectorized
packet classification to other network applications.

6 CONCLUSION
In this paper, we proposed the effective ways to leveraging
SIMD parallelism to improve the performance of the data struc-
ture and algorithm used in network applications. Not only the
conversion of the algorithm from control flow to the data flow
but also memory access latency hiding and SIMD aware data
structure design should be considered. We showed the impact
of those by two case studies which are AVX-512 vectorized
bloom filter and the vectorized OvS megaflow cache. We show
that the performance of the bloom filter lookup improved up
to 162% and 48% for OvS.
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